Predator-induced phenotypic plasticity in larval newts: Trade-offs, selection, and variation in nature

نویسنده

  • Van Buskirk
چکیده

Phenotypic plasticity has important ecological consequences because the strengths of species interactions can change with the behavior and morphology of interacting individuals. Evolutionary studies of plasticity can predict conditions under which shifts in phenotypes will occur and, therefore, may modify species interactions. We studied evolutionary mechanisms maintaining an induced response to predators in Triturus newt larvae, which are among many taxa in freshwater habitats exhibiting predator-induced plasticity. When exposed to caged (nonlethal) Aeshna dragonfly larvae, newts of two species (T. alpestris and T. helveticus) spent more time hiding in the leaf litter, had darker pigmentation in the tail fin, and developed larger heads and larger tails relative to their body size, in comparison with newts in predator-free ponds. The two phenotypes faced a performance trade-off across environments with and without odonates: the predator-induced phenotype survived twice as well as the no-predator phenotype when exposed to free dragonflies, but the predator-induced phenotype of both species grew more slowly until just before metamorphosis. For Triturus alpestris, a direct comparison of performance between phenotypes was complicated because predator-induced newts emerged later in the summer but at a larger body size. Nonrandom mortality imposed by hunting dragonflies caused selection favoring increasing tail size, but we found no selection on specific traits in predator-free ponds. Head shape was not subject to selection in either environment; we suspect that head shape is involved in consuming different prey in the presence and absence of predators and is unrelated to predator escape. Triturus in 25 natural populations from which we collected quantitative samples in 1997 and 1998 exhibited extreme spatial variation in predation regime (density of large predators ranged from 0 to 24 individuals/m2). Variation among populations in head shape was exactly as predicted by experimental results (Triturus of both species had relatively large heads when exposed to predators), but results for tail shape were consistent with the experiments in only one of the two years. The evolutionary mechanisms maintaining plasticity in Triturus and other amphibian larvae should apply to many organisms inhabiting freshwater ponds, so trait-mediated indirect effects seem especially likely to occur in these habitats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predator- and competitor-induced plasticity: how changes in foraging morphology affect phenotypic trade-offs

Studies of phenotypic plasticity frequently demonstrate functional trade-offs between alternative phenotypes by documenting environment-specific costs and benefits. However, the functional mechanisms underlying these trade-offs are often unknown. For example, predator-induced traits typically provide superior predator resistance but slower growth, while competitor-induced traits provide better ...

متن کامل

Plastic parasites: sophisticated strategies for survival and reproduction?

Adaptive phenotypic plasticity in life history traits, behaviours, and strategies is ubiquitous in biological systems. It is driven by variation in selection pressures across environmental gradients and operates under constraints imposed by trade-offs. Phenotypic plasticity has been thoroughly documented for multicellular taxa, such as insects, birds and mammals, and in many cases the underlyin...

متن کامل

Plasticity as panacea? Nerves, hormones, and the currencies of trade-offs

Phenotypic plasticity is nearly universal among organisms, and evidence indicates that plasticity can exhibit additive genetic variation and respond to selection. These findings have important implications for our understanding of how plasticity may be constrained and how its mechanistic structure may affect its evolution. Many life history trade-offs may be conceptualized as plastic traits, wi...

متن کامل

Predator-induced phenotypic plasticity in tadpoles: extension or innovation?

Phenotypic plasticity, the ability of a trait to change as a function of the environment, is central to many ideas in evolutionary biology. A special case of phenotypic plasticity observed in many organisms is mediated by their natural predators. Here, we used a predator-prey system of dragonfly larvae and tadpoles to determine if predator-mediated phenotypic plasticity provides a novel way of ...

متن کامل

Trade-Offs between Predation Risk and Growth Benefits in the Copepod Eurytemora affinis with Contrasting Pigmentation

Intraspecific variation in body pigmentation is an ecologically and evolutionary important trait; however, the pigmentation related trade-offs in marine zooplankton are poorly understood. We tested the effects of intrapopulation phenotypic variation in the pigmentation of the copepod Eurytemora affinis on predation risk, foraging, growth, metabolic activity and antioxidant capacity. Using pigme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007